INSTALASI GENERATOR LISTRIK DAN PEMASANGAN SECARA PARALEL DAN FUNGSI ALAT PEMBAGI BEBAN
Fajar.Sidik
Mahasiswa Gunadarma Fakultas Teknik Industri Jurusan Teknik Industri
Abstrak
Listrik seperti kita ketahui adalah bentuk energi sekunder yang paling praktis penggunaannya oleh manusia, di mana listrik dihasilkan dari proses konversi energi sumber energi primer seperti batu bara, minyak bumi, gas, panas bumi, potensial air dan energi angin. Sistem pembangkitan listrik yang sudah umum digunakan adalah mesin generator tegangan AC, di mana penggerak utamanya bisa berjenis mesin turbin, mesin diesel atau mesin baling-baling. Dalam pengoperasian pembangkit listrik dengan generator, karena faktor keandalan dan fluktuasi jumlah beban, maka disediakan dua atau lebih generator yang dioperasikan dengan tugas terus-menerus, cadangan dan bergiliran untuk generator-generator tersebut. Penyediaan generator tunggal untuk pengoperasian terus menerus adalah suatu hal yang riskan, kecuali bila bergilir dengan sumber PLN atau peralatan UPS.
1. Pendahuluan
Generator listrik adalah sebuah alat yang memproduksi energi listrik dari sumber energi mekanikal, biasanya dengan menggunakan induksi elektromagnetik.Proses ini dikenal sebagai pembangkit listrik. Walau generator dan motor punyabanyak kesamaan, tapi motor adalah alat yang mengubah energi listrik menjadi energi mekanik. Generator mendorong muatan listrik untuk bergerak melalui sebuah sirkuit listrik eksternal, tapi generator tidak menciptakan listrik yang sudah ada di dalam kabel lilitannya. Hal ini bisa dianalogikan dengan sebuah pompa air, yang menciptakan aliran air tapi tidak menciptakan air di dalamnya. Sumber enegi mekanik bisa berupa resiprokat maupun turbin mesin uap, air yang jatuh melakui sebuah turbin maupun kincir air, mesin pembakaran dalam, turbin angin, engkol tangan, energi surya atau matahari, udara yang dimampatkan, atau apapun sumber energi mekanik yang lain.
2. Dasar Teori
Faraday Pada 1831-1832 Michael Faraday menemukan bahwa perbedaan potensial dihasilkan antara ujung-ujung konduktor listrik yang bergerak tegak lurus terhadap medan magnet. Dia membuat generator elektromagnetik pertama berdasarkan efek ini, menggunakan cakram tembaga yang berputar antara kutub magnet tapal kuda. Proses ini menghasilkan arus searah yang kecil. Desain alat yang dijuluki ‘cakram Faraday’ itu tidak efisien dikarenakan oleh aliran arus listrik yang arahnya berlawanan di bagian cakram yang tidak terkena pengaruh medan magnet. Arus yang diinduksi langsung di bawah magnet akan mengalir kembali ke bagian cakram di luar pengaruh medan magnet. Arus balik itu membatasi tenaga yang dialirkan ke kawat penghantar dan menginduksi panas yang dihasilkan cakram tembaga. Generator homopolar yang dikembangkan selanjutnya menyelesaikan permasalahan ini dengan menggunakan sejumlah magnet yang disusun mengelilingi tepi cakram untuk mempertahankan efek medan magnet yang stabil. Kelemahan yang lain adalah amat kecilnya tegangan listrik yang dihasilkan alat ini, dikarenakan jalur arus tunggal yang melalui fluks magnetik.
Dinamo
adalah generator listrik pertama yang mampu mengantarkan tenaga untuk industri, dan masih merupakan generator terpenting yang digunakan pada abad 21. Dinamo menggunakan prinsip elektromagnetisme untuk mengubah putaran mekanik menjadi listrik arus bolak-balik.
Dinamo pertama berdasarkan prinsip Faraday dibuat pada 1832 oleh Hippolyte Pixii, seorang pembuat alat Prancis. Alat ini menggunakan magnet permanen yang diputar oleh sebuah "crank". Magnet yang berputar diletakaan sedemikian rupa sehingga kutub utara dan selatannya melewati sebongkah besi yang dibungkus dengan kawat. Pixii menemukan bahwa magnet yang berputar memproduksi sebuah pulsa arus di kawat setiap kali sebuah kutub melewati "coil". Lebih jauh lagi, kutub utara dan selatan magnet menginduksi arus di arah yang berlawanan. Dengan menambah sebuah komutator, Pixii dapat mengubah arus bolak-balik menjadi arus searah.
Dinamo Gramme
Namun, kedua desain di atas menderita masalah yang sama: mereka menginduksi "spike" arus diikuti tanpa arus sama sekali. Antonio Pacinotti, seorang ilmuwan Italia, memperbaikinya dengan mengganti "coil" berputar dengan yang "toroidal", yang dia ciptakan dengan mebungkus cincin besi. Ini berarti bahwa sebagian dari "coil" terus melewati magnet, membuat arus menjadi lancar. Zénobe Gramme menciptakan kembali desain ini beberapa tahun kemudian ketika mendesain pembangkit listrik komersial untuk pertama kalinya, di Paris pada 1870-an. Desainnya sekarang dikenal dengan nama dinamo Gramme. Beberapa versi dan peningkatan lain telah dibuat, tetapi konsep dasar dari memutar loop kawat yang tak pernah habis tetap berada di hati semua dinamo modern.
Operasi Generator Secara Paralel
Operasi Generator Secara Paralel
Untuk memenuhi peningkatan beban listrik maka generator-generator tersebut dioperasikan secara paralel antar generator atau paralel generator dengan sumber pasokan lain yang lebih
Sehingga diperlukan pula alat pembagi beban listrik untuk mencegah adanya sumber tenaga listrik terutama generator yang bekerja paralel mengalami beban lebih mendahului yang lainnya.
Pasokan listrik ke beban dimulai dengan menghidupkan satu generator, kemudian secara sedikit demi sedikit beban dimasukkan sampai dengan kemampuan generator tersebut, selanjutnya menghidupkan lagi generator berikutnya dan memparalelkan dengan generator pertama untuk memikul beban yang lebih besar lagi. Saat generator kedua diparalelkan dengan generator pertama yang sudah memikul beban diharapkan terjadinya pembagian beban yang semula ditanggung generator pertama, sehingga terjadi kerjasama yang meringankan sebelum beban-beban selanjutnya dimasukkan. Seberapa besar pembagian beban yang ditanggung oleh masing-masing generator yang bekerja paralel akan tergantung jumlah masukan bahan bakar dan udara untuk pembakaran mesin diesel, bila mesin penggerak utamanya diesel atau bila mesin-mesin penggeraknya lain maka tergantung dari jumlah (debit) air ke turbin air, jumlah (entalpi) uap/gas ke turbin uap/gas atau debit aliran udara ke mesin baling-baling.
Jumlah masukan bahan bakar/ udara, uap air/ gas atau aliran udara ini diatur oleh peralatan atau katup yang digerakkan governor yang menerima sinyal dari perubahan frekuensi listrik yang stabil pada 50Hz,
yang ekivalen dengan perubahan putaran (rpm) mesin penggerak utama generator listrik. Bila beban listrik naik maka frekuensi akan turun, sehingga governor harus memperbesar masukan ( bahan bakar/udara, air, uap/gas atau aliran udara) ke mesin penggerak utama untuk menaikkan frekuensinya sampai dengan frekuensi listrik kembali ke normalnya. Sebaliknya bila beban turun, governor mesin-mesin pembangkit harus mengurangi masukan bahan bakar/udara, air, uap air/gas atau aliran udara ke mesin-mesin penggerak sehingga putarannya turun sampai putaran normalnya atau frekuensinya kembali normal pada 50 Hz. Bila tidak ada governor maka mesin-mesin penggerak utama generator akan mengalami overspeed bila beban turun mendadak atau akan mengalami overload bila beban listrik naik.
Governor bekerja secara hidrolik/mekanis, sedangkan sinyal masukan dari keluaran arus generator berupa elektris, sehingga masukan ini perlu diubah ke mekanis dengan menggunakan elektric actuator untuk menggerakkan motor listrik yang menghasilkan gerakan mekanis yang diperlukan oleh governor. Pada beberapa generator yang beroperasi paralel, setelah sebelumnya disamakan tegangan, frekuensi, beda phasa dan urutan phasanya, perubahan beban listrik tidak akan dirasakan oleh masing-masing generator pada besaran tegangan dan frekuensinya selama beban masih dibawah kapasitas total paralelnya, sehingga tegangan dan frekuensi ini tidak digunakan sebagai sumber sinyal bagi governor.Untuk itu digunakan arus keluaran dari masing-masing generator sebagai sumber sinyal pembagian beban sistem paralel generator-generator tersebut.
Saat diparalelkan pembagian beban generator belum seimbang/sebanding dengan kemampuan masing-masing generator. Alat pembagi beban generator dipasangkan pada masing-masing rangkaian keluaran generator, dan masing-masing alat pembagi beban tersebut dihubungkan secara paralel satu dengan berikutnya dengan kabel untuk menjumlahkan sinyal arus keluaran masing-masing generator dan menjumlahkan sinyal kemampuan arus masing-masing generator.Arus keluaran generator yang dideteksi oleh alat pembagi beban akan merupakan petunjuk posisi governor berapa % , atau arus yang lewat berapa % dari kemampuan generator. Hasil bagi dari penjumlahan arus yang dideteksi alat-alat pembagi beban dengan jumlah arus kemampuan generator -generator yang beroperasi paralel dikalikan 100 (%) merupakan nilai posisi governor yang harus dicapai oleh setiap mesin penggerak utama sehingga menghasilkan keluaran arus yang proprosional dan sesuai dengan kemampuan masing-masing generator.
Saat diparalelkan pembagian beban generator belum seimbang/sebanding dengan kemampuan masing-masing generator. Alat pembagi beban generator dipasangkan pada masing-masing rangkaian keluaran generator, dan masing-masing alat pembagi beban tersebut dihubungkan secara paralel satu dengan berikutnya dengan kabel untuk menjumlahkan sinyal arus keluaran masing-masing generator dan menjumlahkan sinyal kemampuan arus masing-masing generator.Arus keluaran generator yang dideteksi oleh alat pembagi beban akan merupakan petunjuk posisi governor berapa % , atau arus yang lewat berapa % dari kemampuan generator. Hasil bagi dari penjumlahan arus yang dideteksi alat-alat pembagi beban dengan jumlah arus kemampuan generator -generator yang beroperasi paralel dikalikan 100 (%) merupakan nilai posisi governor yang harus dicapai oleh setiap mesin penggerak utama sehingga menghasilkan keluaran arus yang proprosional dan sesuai dengan kemampuan masing-masing generator.
Instalasi Teknis
Dalam prakteknya alat pembagi beban generator dipasang dengan bantuan komponen-komponen seperti berikut : trafo arus, trafo tegangan (sebagai pencatu daya), electric actuator, potensiometer pengatur kecepatan dan saklar-saklar bantu. Lihat diagram pengkabelannya dalam Trafo arus berfungsi sebagai transducer arus keluaran generator sampai dengan sebesar arus sinyal yang sesuai untuk alat pembagi beban generator (biasanya maksimum 5 A atau = 100 % kemampuan maksimum generator)
- Trafo tegangan berfungsi sebagai sumber daya bagi alat pembagi beban, umumnya dengan tegangan 110 V AC, 50 Hz; dibantu adapter untuk keperluan tegangan DC.
- Electric actuator merupakan peralatan yang menerima sinyal dari alat pembagi beban sehingga mampu menggerakkan motor DC di governor sampai dengan arus keluaran generator mencapai yang diharapkan.
- Potensiometer pengatur kecepatan adalah alat utama untuk mengatur frekuensi dan tegangan saat generator akan diparalelkan atau dalam proses sinkronisasi. Tegangan umumnya sudah diatur oleh AVR, sehingga naik turunnya tegangan hanya dipengaruhi oleh kecepatan putaran mesin penggerak. Setelah generator dioperasikan paralelkan atau sudah sinkron dengan yang telah beroperasi kemudian menutup Mccb generator, fungsi potensiometer pengatur kecepatan ini diambil alih oleh alat pembagi beban generator. Untuk lebih akuratnya pengaturan kecepatan dalam proses sinkronisasi secara manual, biasanya terdapat potensiometer pengatur halus dan potensiometer pengatur kasar.
- Pada sistem kontrol otomatis pemaralelan generator dapat dilakukan oleh SPM (modul pemaralel generator) dengan mengatur tegangan dan frekuensi keluaran dari generator, kemudian mencocokan dengan tegangan dan frekuensi sistem yang sudah bekerja secara otomatis, setelah cocok memberikan sinyal penutupan ke Mccb generator sehingga bergabung dalam operasi paralel. Untuk mencocokkan tegangan dan frekuensi dapat dilihat dalam satu panel sinkron yang digunakan bersama untuk beberapa generator dimana masing-masing panel generator mempunyai saklar sinkron disamping SPM-nya. ditunjukkan penggunaan alat pembagi beban generator dalam suatu sistem kontrol tenaga generator, kontrol mesin penggerak dan managemen beban.(file power generation control).
f. Saklar-saklar bantu pada alat pembagi beban generator berfungsi sebagai alat manual proses pembagian (pelepasan & pengambilan) beban oleh suatu generator yang beroperasi dalam sistem paralel. Misalnya *saklar 1 ditutup untuk meminimumkan bahan bakar diesel yang berarti melepaskan beban.* Saklar 3 ditutup untuk menuju pada kecepatan kelasnya (rated speed) yang berarti pengambilan beban dari generator yang perlu diringankan beban listriknya.
Setelah generator beroperasi secara paralel, generator-generator dengan alat pembagi bebannya selalu merespon secara aktif segala tindakan penaikan atau penurunan beban listrik, sehingga masing-masing generator menanggung beban dengan prosentasi yang sama diukur dari kemampuan masing-masing
4. Kesimpulan
Dalam menjalankan atau memberikan suplai listrik yang besar maka tidak cukup jika hanya didi penuhi oleh sebuah generator saja.
Oleh karena itu diperlukan beberapa generator, yang kerjanya dihubungkan dengan generator lainya (dihubungkan secara paralel), dan juga di gabungkan dengan pembangkit listrik yang memiliki suplai listrik yang besar. Seperti sbuah gardu penyimpan PLN misalnya. Maka untuk itu alat untuk pembagi daya harus ada pada sebuah generator paralel agar antara generator yang satu dengan yang lain tidak terjadi kesetimbangan beban daya.
Karena apabila tidak ada keseimbangan daya pada generator yang satu dengan yang lain maka akibatnya mesin generator akan cepat rusak,
5. Saran
Kebutuhan akan energi sangatlah banyak, dikarenakan setiap manusia di muka bumi sangatlah bergantung pada apa yang namanya listrik, dan untuk itu alangkah baiknya dalam memenuhi kebutuhan energi ini, diharapkan manusia juga memikirkan untuk mencari energi alternatif, untuk cadangan dari energi yang ada saat ini. Karena yang kita ketahui bersama bahwa dalam pemenuhanya, kita harus mengorbankan energi lainya yang dapat merusak bumi. Seperti bahan bakar fosil dan gas yang jumlahnya terbatas dan akan habis, namun untuk ketersediaan kembalinya membutuhkan waktu yang lama.
6. Daftar Pustaka
http://static.howstuffworks.com/gif/automatic-transmission-governor.jpg
http://id.wikipedia.org/wiki/Generator_listrik
http://www.elektroindonesia.com/elektro/ener35a.html
http://memetmulyadi.wordpress.com/2009/02/06/induksi-elektromagnetik-materi-ipa-kelas-9-smpmts/
http://willycar.files.wordpress.com/2008/11/dinamo.jpg
Tidak ada komentar:
Posting Komentar